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E-mail: a.widom@neu.edu

Received 22 October 2002
Published 10 February 2003
Online at stacks.iop.org/JPhysCM/15/1109

Abstract
Electromagnetic superradiant field coherence exists in a condensed matter
system if the electromagnetic field oscillators undergo a mean displacement.
Transitions into thermal states with ordered superradiant phases have been
shown to theoretically exist in Dicke–Preparata models. The theoretical validity
of these models for condensed matter has been called into question due to non-
relativistic diamagnetic terms in the electronic Hamiltonian. The microscopic
bases of Dicke–Preparata thermal superradiance for realistic macroscopic
systems are explored in this work. The impossibility of ‘diaelectric’ correlations
in condensed matter systems (via the Landau–Lifshitz theorem) provides a
strong theoretical basis for understanding the physical reality of condensed
matter thermodynamic superradiant phases.

1. Introduction

In quantum electrodynamic (QED) theory, the magnetic field B and the Maxwell displacement
field D are non-commuting quantum fields; i.e. in Gaussian units

[Di (r), B j(r
′)] = −4π ih̄cεi jk∂kδ(r − r′). (1)

The electromagnetic field in a condensed matter system is said to be coherent if and only if (on
average) B �= 0 or D �= 0 or both situations hold true. In terms of the electromagnetic oscillator
modes, there is QED coherence [1] when one or more of the long wavelength field oscillators
exhibit a spontaneous non-zero mean displacement (even in the absence externally applied
fields). Ferromagnets and ferroelectrics clearly exhibit such spontaneous electromagnetic field
ordering on a macroscopic scale. Microscopic QED coherence may also occur on the smaller
length scales of atomic and molecular physics as well as on the length scale of mesoscopic
coherent domains. For example, atomic or molecular magnetic moments clearly exhibit finite
magnetic fields B(r) �= 0 in a spatial domain surrounding the moments. Dicke models of
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thermal superradiance have been extensively studied [2–23] and constitute an important class
of ordered electromagnetic field coherent states.

The Dicke Hamiltonian [24] for a single photon oscillator may be written in the form

HDicke = 1
2 (P2 + ω2

∞ Q2) − f Q + Helectronic. (2)

The first term on the right-hand side of equation (2) represents a single photon oscillator
mode. The electronic states are described by the Hamiltonian Helectronic. In the Dicke model,
Helectronic describes a set of two (energy) level molecules. The oscillator force operator f
is determined by the electronic dipole moment operators of the molecules. The existence of
a superradiant phase transition has been rigorously proven [25, 26] for the strong coupling
Dicke Hamiltonian in equation (2). The superradiant phase transition may be understood
by computing the shift in the photon oscillator frequency from ω∞ to ω0 due to the dipole
interaction. To see how this comes about, consider the propagator for the oscillator coordinate

D(ζ ) = i

h̄

∫ ∞

0
eiζ t〈[Q(t), Q(0)]〉 dt where Im(ζ ) > 0. (3)

If there were no interaction between the oscillator and the electronic degrees of freedom, then
the propagator would have the form

D0(ζ ) =
(

1

ω2∞ − ζ 2

)
so that D0(0) = 1

ω2∞
. (4)

When there is coupling between the oscillator and the electronic degrees of freedom, the
resulting damping function �(ω) introduces into the propagator a ‘polarization part’

�(ζ ) = 2

π

∫ ∞

0

(
ω2�(ω)

ω2 − ζ 2

)
dω (5)

which describes both damping and oscillator frequency shift information; i.e. the full
propagator reads

D(ζ ) =
(

1

ω2∞ − ζ 2 − �(ζ )

)
so that D(0) = 1

ω2
0

. (6)

The renormalized frequency ω0 is determined by the oscillator strength sum rule [25]

ω2
∞ = ω2

0 +
2

π

∫ ∞

0
�(ω) dω where �(ω) � 0. (7)

The oscillator-frequency-dependent damping function, denoted by �(ω) and caused by the
random force f , lowers the square of the frequency from ω2∞ to ω2

0. If the damping is sufficiently
strong, then ω2

0 < 0 and the oscillator becomes unstable about the old equilibrium position
Q̄old = 0. A new equilibrium position is reached Q̄new �= 0 which describes the superradiant
ordered state. There is little doubt that strong damping can produce a superradiant ordered
phase if the Dicke Hamiltonian is employed.

Nevertheless, the validity of the Dicke model Hamiltonian as a description of real
condensed matter systems has been brought into question [27–31]. At the centre of the
objections is the notion that the conventional non-relativistic electronic Hamiltonian [32–35]
has both linear and quadratic terms in the vector potential A. Some have asserted [27–29] that
the quadratic terms in A stabilize the oscillator and thereby eliminate a phase transition into a
coherent superradiant state. In a gauge invariant form, the terms quadratic in A are physically
terms quadratic in the magnetic field B = curl A, i.e. the diamagnetic terms. Diamagnetic
inequalities have been invoked which claim [31] to prove the absence of the oscillator instability.
Quite apart from the fact that the rigorous diamagnetic inequality has been proved only for
spin zero bosons [36] and not for spin one half electrons, the fact that diamagnetism does
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sometimes occur in electronic systems by no means implies that all oscillator modes are stable.
The essential and physically correct ideas have been explored by Landau and Lifshitz [37].
The conventional QED interaction Hamiltonian does indeed contain terms quadratic in the
magnetic field B but only linear interaction terms couple into the Maxwell displacement
field D. It is this electric, strictly linear coupling which is taken realistically into account in
Dicke–Preparata models. The superradiant ordered phases in the Maxwell displacement field
(D �= 0) are not adversely affected by weak diamagnetic couplings since the coupling into D
remains strictly linear.

Based on the above physical arguments and the nature of the linear and quadratic couplings,
Landau and Lifshitz proved the following important theorem for materials described by a
dielectric constant ε (wherein D = εE) and a magnetic permeability µ (wherein B = µH):

Theorem 1. The magnetic permeability µ > 0 can be either paramagnetic µ > 1 or
diamagnetic µ < 1. The dielectric constant must be paraelectric ε > 1. There is no
‘diaelectricity’ in condensed matter systems, i.e. the range 1 > ε > 0 is strictly forbidden.

The above theorem and the generalizations to be discussed below provide a strong
theoretical basis for the physical reality of the thermal superradiant phase.

Our purpose is to discuss the theoretical microscopic bases of Dicke–Preparata models
as applied to realistic macroscopic condensed matter systems. In particular, we shall examine
in detail the linear (in D and B) and quadratic (only in B) terms in the interaction. In
section 2 we describe the conventional QED Hamiltonian. The electronic degrees of freedom
are considered to be non-relativistic. A canonical transformation is introduced which allows for
a precise microscopic definition for the transverse Maxwell displacement field D = E +4πP .
In section 3 the notion of diabatic and adiabatic changes in electrodynamic processes will be
defined. Dissipation is introduced as a diabatic (i.e. non-adiabatic) process. In section 4, the
statistical thermodynamics of the electric dipole moment interactions will be discussed and a
generalization of the Landau–Lifshitz theorem 1 will be proved. The diabatic dissipation will
be related to the thermodynamic dielectric response of the medium. In section 5, it will be
shown how the instability of the thermodynamic dielectric response function is the signature
of a transition into a superradiant phase.

2. QED Hamiltonian

If we choose a vector potential in the Coulomb gauge,

B = curl A, div A = 0, (8)

then the QED Hamiltonian of interest in the work which follows has the form

HQE D = 1

8π

∫
(|E′|2 + |B|2) d3r + H [A]. (9)

E′ is the operator which denotes the transverse part of the electric field. When operating on
a wavefunction 
 , the transverse electric field operator may be written as

E′(r)
 = 4π ih̄c

(
δ


δA(r)

)
= 4π ih̄c curl

(
δ


δB(r)

)
. (10)

H [A] denotes the Hamiltonian (including Coulomb interactions) of the charged particles. The
Coulomb Hamiltonian when B = 0 has the form

H [A = 0] = HCoul = −
∑

j

h̄2

2m
� j −

∑
a

h̄2

2Ma
�a + U, (11)
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where the total potential energy for the electrons and nuclei in the condensed matter system is
given by

U = e2

(∑
j<k

1

r jk
+

∑
a<b

Za Zb

Rab
−

∑
ja

Za

|r j − Ra|
)

. (12)

For A �= 0,

H [A] = −
∑

j

(h̄c∇ j − ieA j )
2

2mc2
−

∑
a

(h̄c∇a − iZa|e|Aa)
2

2Mac2
+ Hs + U, (13)

where A j = A(r j ), Aa = A(Ra) and the interaction of the magnetic field with the particle
spins is given by

Hs = −
(

ge

2mc

) ∑
j

s j · B(r j ) −
∑

a

(
ga Za|e|
2Mac

)
Sa · B(Ra). (14)

Let us consider a basis in which the Coulomb Hamiltonian is diagonal; i.e.

H [A = 0]ψ j = HCoulψ j = W j [A = 0]ψ j where j = 0, 1, 2, . . . . (15)

In the Coulomb basis, one may define the matrix elements

H jk[A] = (ψk, H [A]ψ j) (16)

so that the Hamiltonian in equation (13) has the equivalent matrix representation

H [A] =




H00[A] H01[A] H02[A] . . .

H10[A] H11[A] H12[A] . . .

H20[A] H21[A] H22[A] . . .
...

...
...

. . .


 . (17)

In principle, the Hamiltonian can be brought to diagonal form by a unitary transformation

W [A] = U †[A]H [A]U [A] where U †[A] = U−1[A] (18)

and

W [A] =




W0[A] 0 0 . . .

0 W1[A] 0 . . .

0 0 W2[A] . . .
...

...
...

. . .


 . (19)

In virtue of gauge invariance

W [A] ≡ W [B]. (20)

The unitary transformation can be employed to transform the total Hamiltonian in equation (9)
into the adiabatic representation

H = U †[A]HQE DU [A]. (21)

When acting on the electric field in equation (10), the transformation defines the Maxwell
displacement field D and polarization P via

U †[A]E′U [A] = E = D − 4πP , (22)

where

D(r) = 4π ih̄c

(
δ

δA(r)

)
= 4π ih̄c curl

(
δ

δB(r)

)
, (23)
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and

P (r) = −ih̄cU †[A]

(
δU [A]

δA(r)

)
= ih̄c

(
δU †[A]

δA(r)

)
U [A]. (24)

Equations (9), (10) and (21)–(24) imply the adiabatic Hamiltonian representation

H = 1

8π

∫
(|D − 4πP |2 + |B|2) d3r + W [A], (25)

which may be conveniently written as

H = 1

8π

∫
|D|2 d3r −

∫
D · P d3r + H ′[A]. (26)

In equation (26),

H ′[A] = 1

8π

∫
|B|2 d3r + W [A] + 2π

∫
|P |2 d3r. (27)

Finally, the transverse current operator in the adiabatic representation of equations (18) and (19)
is given by

J(r) = −cU †[A]
δH [A]

δA(r)
U [A]. (28)

The notion of ‘diabatic damping’ is associated with a decomposition of the current equation (28)
into adiabatic and non-adiabatic parts.

3. Damping and electrical conductivity

For the unitary transformation in equation (18) we have the differential identity

U † δH

δA
U = δ

δA
(U † HU) − U † HUU † δU

δA
− δU †

δA
UU † HU, (29)

which together with equations (24) and (28) yields the current decomposition

J(r) = −c
δW [A]

δA(r)
+

i

h̄
[W [A],P (r)]. (30)

One may employ the gauge invariant B = curl A in the form (see equation (20)) of an
adiabatic current

Jadiabatic(r) = −c
δW [A]

δA(r)
= −c curl

δW [B]

δB(r)
= c curl M . (31)

The gauge invariant adiabatic magnetization has a form which follows from equations (19)
and (31); i.e.

M = −




δW0[B]/δB 0 0 . . .

0 δW1[B]/δB 0 . . .

0 0 δW2[B]/δB . . .
...

...
...

. . .


 . (32)

The dissipative (or ‘diabatic’) part of the current operator is given by

Jd(r) = i

h̄
[W,P (r)] = Ṗ (r). (33)

Equation (30) then takes the conventional form having both magnetization and polarization
parts; i.e.

J(r) = c curlM(r) + Ṗ (r). (34)
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Although equation (34) is well known in classical electrodynamics, we have given the proof
from a fully QED viewpoint.

The diabatic part of the current in equation (33) describes the dissipation via the non-local
transverse electrical conductivity tensor σi j(r, r′, ω + i0+). The microscopic expression for
the transverse conductivity is determined by the fluctuation dissipation theorem

σi j (r, r′, ζ ) = 1

h̄

∫ β

0

∫ ∞

0
eiζ t〈Jd, j (r

′,−iλ)Jd,i (r, t)〉 dt dλ. (35)

Note

(i) The complex frequency obeys Im ζ > 0.
(ii) The thermal average 〈· · ·〉 is over the charged particle degrees of freedom.

(iii) The time variation of operators in equation (35) employs the Hamiltonian H ′[A] in
equation (27).

(iv) Finally,

β =
(

h̄

kB T

)
. (36)

For the transverse dielectric properties of charged particles, one employs the electric
susceptibility

χi j(r, r′, ζ ) = i

h̄

∫ ∞

0
eiζ t〈[Pi (r, t), Pj (r

′, 0)]〉 dt . (37)

Integrating equation (37) by parts yields

−iζχi j(r, r′, ζ ) = hi j (r, r′) +
i

h̄

∫ ∞

0
eiζ t〈[Ṗi (r, t), Pj (r

′, 0)]〉 dt, (38)

where the equal time commutator contribution is given by

hi j (r, r′) = i

h̄
〈[Pi (r), Pj(r

′)]〉. (39)

Employing the Kubo–Martin–Schwinger [38–41] condition

i〈[Ṗi (r, t), Pj (r
′, 0)]〉 =

∫ β

0
〈Ṗj (r

′,−iλ)Ṗi (r, t)〉 dλ (40)

and equation (33) in (35) yields a simple relationship between the conductivity and the
susceptibility

−iζχi j(r, r′, ζ ) = σi j (r, r′, ζ ) + hi j(r, r′). (41)

The dissipative part of the conductivity is determined by

Re{σi j (r, r′, ω + i0+)} = ω Im{χi j(r, r′, ω + i0+)}. (42)

The quantum mechanical Hall conductivity contribution hi j(r, r′) from the transverse
polarization is determined by the commutation relation in equation (39).

Note that the response functions discussed above are defined with respect to an applied
magnetic field B = curl A. Magneto-conductivity in σi j and the Faraday effect in χi j are
implicitly included in the above considerations. For superradiance described by a coherent
field D �= 0 one averages over magnetic field fluctuations. The mean magnetic field (on
macroscopic length scales) obeys B = 0. Let us now consider the details of the magnetic field
fluctuations.
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4. Statistical thermodynamics

The QED free energy F of a condensed matter system can be written as

G = −kB T ln{Tr e−H/kB T } (43)

where H is given in equation (26). The complete trace over quantum states includes
electromagnetic field degrees of freedom as well as charged particle degrees of freedom.
Thus

Tr e−H/kB T = Tr(D,A)(Tr(Charged) e−H/kB T ). (44)

If one treats the electromagnetic field trace in the quasi-classical limit of a functional integral

Tr(D,A)(· · ·) →
∫ ∏

r

(
DD(r)DA(r)

8π h̄c

)
(· · ·), (45)

then equations (26) and (43)–(45) imply the functional representation

exp

(
− G

kB T

)
=

∫
exp

(
−Ftot [D]

kB T

) ∏
r

(DD(r)). (46)

The total free energy functional of the Maxwell displacement field obeys

Ftot [D] = 1

8π

∫
|D|2 d3r + F[D], (47)

where

exp

(
−F[D]

kB T

)
= Tr(Charged)

∫
exp

(
− H ′′[A,D]

kB T

) ∏
r

(
DA(r)

8π h̄c

)
(48)

and

H ′′[A,D] = H ′[A] −
∫

P (r, [A]) · D(r) d3r. (49)

The coupling into the Maxwell displacement field in the Hamiltonian equation (49) is
linear. Equations (48) and (49) imply that the free energyF[D] is a convex upward functional.
For the second functional derivative

χ̃i j(r, r′, [D]) = −
(

δ2F[D]

δDi (r)δD j (r′)

)
(50)

we have the following:

Theorem 2. The spectrum of the zero frequency susceptibility {χ̃λ[D]} defined by the
eigenvalue equation

∑
j

∫
χ̃i j(r, r′, [D])ξ j

λ (r′) d3r′ = χ̃λ[D]ξ i
λ(r)

obeys χ̃λ[D] � 0 for all λ.

In order to prove a generalization of the Landau and Lifshitz theorem 1, one must
investigate the second functional derivatives

ηi j (r, r′, [D]) = 4π

(
δ2Ftot [D]

δDi (r)δD j(r′)

)
= �i j(r − r′) − 4πχ̃i j(r, r′, [D]), (51)
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where equation (47) has been invoked and the transverse delta function is defined as

�i j(r) =
∫

eik·r
(

δi j − ki k j

|k|2
)

d3k

(2π)3
,

=
(

2

3

)
δi jδ(r) +

(
1

4π

)(
3rir j − r2δi j

r5

)
. (52)

The spectrum of the zero frequency transverse dielectric constants {ελ[D]} is defined by the
eigenvalue equation

∑
j

∫
ηi j (r, r′, [D])ξ j

λ (r′) d3r′ =
(

1

ελ[D]

)
ξ i
λ(r), (53)

and obeys

ελ[D] =
[

1

1 − 4πχ̃λ[D]

]
. (54)

The thermodynamic stability condition for the free energy Ftot [D] can be summarized by
the following.

Theorem 3. Thermodynamic stability for a Maxwell displacement field D requires that
ελ[D] > 0 for all λ.

Proof. For a Maxwell field D to represent thermal equilibrium, one expects the free energy
Ftot [D] to be at a minimum. The second (functional) derivative conditions for achieving a
thermodynamic free energy minimum are those stated in the theorem in virtue of equations (51)
and (53). �

The central result of this section is the following generalization of the Landau–Lifshitz
theorem 1.

Theorem 4. Thermodynamic stability for a Maxwell displacement field D requires the
paraelectric inequality ελ[D] > 1 for all λ. Diaelectric behaviour (0 < ελ[D] < 1) is
strictly forbidden.

Proof. Theorem 4 follows directly from theorem 2, equation (54) and theorem 3. �
We now reconsider the dissipative properties of a condensed matter system after coherent

averaging over magnetic field B = curl A fluctuations. We employ the functional averaging
measure

∫
(· · ·) ∏

r(DA/8π h̄c) as in equations (47) and (48). For example, the new
susceptibility

χ̃i j(r, r′, ζ, [D]) = i

h̄

∫ ∞

0
eiζ t 〈〈[Pi (r, t), Pj (r

′, 0)]〉〉 dt, (55)

where the complete ‘double averaging’ 〈〈· · ·〉〉 is over both charged particle motions and
magnetic field fluctuations with the Maxwell displacement field D held fixed. The time-
dependent operators in equation (55) are with respect to the Hamiltonian H ′′[A,D] defined
in equation (49). The dissipative motions of the condensed matter system are then described
by

Re{σ̃i j (r, r′, ω + i0+, [D])} = ω Im{χ̃i j(r, r′, ω + i0+, [D])}. (56)

Finally, the static susceptibility in equation (50) is the zero frequency limit

χ̃i j(r, r′, [D]) ≡ lim
ω→0

Re{χ̃i j(r, r′, ω + i0+, [D])}. (57)

The thermodynamic stability test for a coherent electromagnetic superradiant state follows
from theorem 2, equation (54) and theorem 4.
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5. Thermodynamic stability

In the absence of external electric fields, the stable values of D are such as to minimize [37]
the total free energy Ftot [D]. The free energy minimization condition implies a vanishing
thermal electric field;

E(r) = 4π

(
δFtot [D]

δD(r)

)
= D(r) − 4π〈〈P (r)〉〉 = 0. (58)

The first derivative equation (58) will in general have more than one possible solution with
a non-zero Maxwell displacement field [D]. The multiple solutions correspond to differing
possibilities for superradiant coherent domains. A necessary condition for a true free energy
minimum has been proved in theorem 4. Employing equation (54) we find the stability
condition

0 < 4πχ̃λ[D] < 1. (59)

From (i) equation (55), (ii) the resulting dispersion relation

χ̃i j(r, r′, ζ, [D]) = 2

π

∫ ∞

0

Im χ̃i j(r, r′, ω + i0+, [D]) dω

ω2 − ζ 2

χ̃i j(r, r′, [D]) ≡ lim
ζ→0

χ̃i j(r, r′, ζ, [D]) = 2

π

∫ ∞

0
Im χ̃i j(r, r′, ω + i0+, [D])

dω

ω
, (60)

(iii) theorem 2 and (iv) the stability equation (59), it follows that strong dissipation,
i.e. substantial {Im χ̃ (ω + i0+)/ω}, tends to yield thermodynamic instabilities.

Symmetry under parity transformations yields the solution D = 0 corresponding to a
‘normal’ phase. If 4πχ̃λ[D = 0] > 1 for some λ, then the normal phase is unstable. The true
free energy minimum will arise for coherent superradiant domains with [D �= 0]. There may
be many possible superradiant domain configurations as discussed above. Domain walls and/or
normal phase regions may separate the superradiant domains wherein D = 4π〈〈P (r)〉〉 �= 0.

6. Conclusions

We have discussed a generalization of the theorem by Landau and Lifshitz whereby ε � 1
for materials described by D = εE. The theorem and its generalization is independent of
magnetic permeability µ when the material also obeys B = µH . Magnetic properties may
be either paramagnetic or diamagnetic, but diaelectric properties of matter are ruled out by
quantum statistical mechanical stability considerations.

The stability criteria are crucial for the understanding of stable superradiant domains. In
particular, for all of the possible eigenmodes of the dielectric susceptibility, the generalized
Landau–Lifshitz stability condition ελ[D] � 1 is crucial for testing whether (or not) a
superradiant domain is thermodynamically stable. Contrary to what appeared some time ago in
the literature [29], the dielectric stability conditions are independent of possible diamagnetism.
No approximations to the free energy functionalFtot [D] have been required to reach important
general conclusions, however further approximations are required for concrete computation.
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